Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Nonlinear Dynamics ; : 1-16, 2023.
Article in English | EuropePMC | ID: covidwho-2257467

ABSTRACT

In the classical infectious disease compartment model, the parameters are fixed. In reality, the probability of virus transmission in the process of disease transmission depends on the concentration of virus in the environment, and the concentration depends on the proportion of patients in the environment. Therefore, the probability of virus transmission changes with time. Then how to fit the parameters and get the trend of the parameters changing with time is the key to predict the disease course with the model. In this paper, based on the US COVID-19 epidemic statistics during calibration period, the parameters such as infection rate and recovery rate are fitted by using the linear regression algorithm of machine science, and the laws of these parameters changing with time are obtained. Then a SIR model with time delay and vaccination is proposed, and the optimal control strategy of epidemic situation is analyzed by using the optimal control theory and Pontryagin maximum principle, which proves the effectiveness of the control strategy in restraining the transmission of COVID-19. The numerical simulation results show that the time-varying law of the number of active cases obtained by our model basically conforms to the real changing law of the US COVID-19 epidemic statistics during calibration period. In addition, we have predicted the changes in the number of active cases in the COVID-19 epidemic in the USA over time in the future beyond the calibration cycle, and the predicted results are more in line with the actual epidemic data.

2.
Nonlinear Dyn ; 111(11): 10677-10692, 2023.
Article in English | MEDLINE | ID: covidwho-2257469

ABSTRACT

In the classical infectious disease compartment model, the parameters are fixed. In reality, the probability of virus transmission in the process of disease transmission depends on the concentration of virus in the environment, and the concentration depends on the proportion of patients in the environment. Therefore, the probability of virus transmission changes with time. Then how to fit the parameters and get the trend of the parameters changing with time is the key to predict the disease course with the model. In this paper, based on the US COVID-19 epidemic statistics during calibration period, the parameters such as infection rate and recovery rate are fitted by using the linear regression algorithm of machine science, and the laws of these parameters changing with time are obtained. Then a SIR model with time delay and vaccination is proposed, and the optimal control strategy of epidemic situation is analyzed by using the optimal control theory and Pontryagin maximum principle, which proves the effectiveness of the control strategy in restraining the transmission of COVID-19. The numerical simulation results show that the time-varying law of the number of active cases obtained by our model basically conforms to the real changing law of the US COVID-19 epidemic statistics during calibration period. In addition, we have predicted the changes in the number of active cases in the COVID-19 epidemic in the USA over time in the future beyond the calibration cycle, and the predicted results are more in line with the actual epidemic data.

SELECTION OF CITATIONS
SEARCH DETAIL